Ollama
The ollama
provider is compatible with Ollama, which enables access to Llama, Mixtral, Mistral, and more.
You can use its /api/generate
endpoint by specifying any of the following providers from the Ollama library:
ollama:completion:llama3.2
ollama:completion:llama3.3
ollama:completion:phi4
ollama:completion:qwen2.5
ollama:completion:granite3.2
ollama:completion:deepcoder
ollama:completion:codellama
ollama:completion:llama2-uncensored
- ...
Or, use the /api/chat
endpoint for chat-formatted prompts:
ollama:chat:llama3.2
ollama:chat:llama3.2:1b
ollama:chat:llama3.2:3b
ollama:chat:llama3.3
ollama:chat:llama3.3:70b
ollama:chat:phi4
ollama:chat:phi4-mini
ollama:chat:qwen2.5
ollama:chat:qwen2.5:14b
ollama:chat:qwen2.5:72b
ollama:chat:qwq:32b
ollama:chat:granite3.2
ollama:chat:granite3.2:2b
ollama:chat:granite3.2:8b
ollama:chat:deepcoder
ollama:chat:deepcoder:1.5b
ollama:chat:deepcoder:14b
ollama:chat:mixtral:8x7b
ollama:chat:mixtral:8x22b
- ...
We also support the /api/embeddings
endpoint via ollama:embeddings:<model name>
for model-graded assertions such as similarity.
Supported environment variables:
OLLAMA_BASE_URL
- protocol, host name, and port (defaults tohttp://localhost:11434
)OLLAMA_API_KEY
- (optional) api key that is passed as the Bearer token in the Authorization Header when calling the APIREQUEST_TIMEOUT_MS
- request timeout in milliseconds
To pass configuration options to Ollama, use the config
key like so:
providers:
- id: ollama:chat:llama3.3
config:
num_predict: 1024
temperature: 0.7
top_p: 0.9
think: true # Enable thinking/reasoning mode (top-level API parameter)
You can also pass arbitrary fields directly to the Ollama API using the passthrough
option:
providers:
- id: ollama:chat:llama3.3
config:
passthrough:
keep_alive: '5m'
format: 'json'
# Any other Ollama API fields
Using Ollama as a Local Grading Provider
Using Ollama for Model-Graded Assertions
Ollama can be used as a local grading provider for assertions that require language model evaluation. When you have tests that use both text-based assertions (like llm-rubric
, answer-relevance
) and embedding-based assertions (like similar
), you can configure different Ollama models for each type:
defaultTest:
options:
provider:
# Text provider for llm-rubric, answer-relevance, factuality, etc.
text:
id: ollama:chat:gemma3:27b
config:
temperature: 0.1
# Embedding provider for similarity assertions
embedding:
id: ollama:embeddings:nomic-embed-text
config:
# embedding-specific config if needed
providers:
- ollama:chat:llama3.3
- ollama:chat:qwen2.5:14b
tests:
- vars:
question: 'What is the capital of France?'
assert:
# Uses the text provider (gemma3:27b)
- type: llm-rubric
value: 'The answer correctly identifies Paris as the capital'
# Uses the embedding provider (nomic-embed-text)
- type: similar
value: 'Paris is the capital city of France'
threshold: 0.85
Using Ollama Embedding Models for Similarity Assertions
Ollama's embedding models can be used with the similar
assertion to check semantic similarity between outputs and expected values:
providers:
- ollama:chat:llama3.2
defaultTest:
assert:
- type: similar
value: 'The expected response should explain the concept clearly'
threshold: 0.8
# Override the default embedding provider to use Ollama
provider: ollama:embeddings:nomic-embed-text
tests:
- vars:
question: 'What is photosynthesis?'
assert:
- type: similar
value: 'Photosynthesis is the process by which plants convert light energy into chemical energy'
threshold: 0.85
You can also set the embedding provider globally for all similarity assertions:
defaultTest:
options:
provider:
embedding:
id: ollama:embeddings:nomic-embed-text
assert:
- type: similar
value: 'Expected semantic content'
threshold: 0.75
providers:
- ollama:chat:llama3.2
tests:
# Your test cases here
Popular Ollama embedding models include:
ollama:embeddings:nomic-embed-text
- General purpose embeddingsollama:embeddings:mxbai-embed-large
- High-quality embeddingsollama:embeddings:all-minilm
- Lightweight, fast embeddings
localhost
and IPv4 vs IPv6
If locally developing with localhost
(promptfoo's default),
and Ollama API calls are failing with ECONNREFUSED
,
then there may be an IPv4 vs IPv6 issue going on with localhost
.
Ollama's default host uses 127.0.0.1
,
which is an IPv4 address.
The possible issue here arises from localhost
being bound to an IPv6 address,
as configured by the operating system's hosts
file.
To investigate and fix this issue, there's a few possible solutions:
- Change Ollama server to use IPv6 addressing by running
export OLLAMA_HOST=":11434"
before starting the Ollama server. Note this IPv6 support requires Ollama version0.0.20
or newer. - Change promptfoo to directly use an IPv4 address by configuring
export OLLAMA_BASE_URL="http://127.0.0.1:11434"
. - Update your OS's
hosts
file to bindlocalhost
to IPv4.
Evaluating models serially
By default, promptfoo evaluates all providers concurrently for each prompt. However, you can run evaluations serially using the -j 1
option:
promptfoo eval -j 1
This sets concurrency to 1, which means:
- Evaluations happen one provider at a time, then one prompt at a time.
- Only one model is loaded into memory, conserving system resources.
- You can easily swap models between evaluations without conflicts.
This approach is particularly useful for:
- Local setups with limited RAM
- Testing multiple resource-intensive models
- Debugging provider-specific issues