Azure
The azure provider enables you to use Azure OpenAI Service models with Promptfoo. It shares configuration settings with the OpenAI provider.
Setup
There are three ways to authenticate with Azure OpenAI:
Option 1: API Key Authentication
Set the AZURE_API_KEY environment variable and configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Option 2: Client Credentials Authentication
Set the following environment variables or config properties:
AZURE_CLIENT_ID/azureClientIdAZURE_CLIENT_SECRET/azureClientSecretAZURE_TENANT_ID/azureTenantId
Optionally, you can also set:
AZURE_AUTHORITY_HOST/azureAuthorityHost(defaults to 'https://login.microsoftonline.com')AZURE_TOKEN_SCOPE/azureTokenScope(defaults to 'https://cognitiveservices.azure.com/.default')
Then configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Option 3: Azure CLI Authentication
Authenticate with Azure CLI using az login before running promptfoo. This is the fallback option if the parameters for the previous options are not provided.
Optionally, you can also set:
AZURE_TOKEN_SCOPE/azureTokenScope(defaults to 'https://cognitiveservices.azure.com/.default')
Then configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Provider Types
azure:chat:<deployment name>- For chat endpoints (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, gpt-4.1-mini, gpt-4.1-nano)azure:completion:<deployment name>- For completion endpoints (e.g., gpt-35-turbo-instruct)azure:embedding:<deployment name>- For embedding models (e.g., text-embedding-3-small, text-embedding-3-large)azure:responses:<deployment name>- For the Responses API (e.g., gpt-4.1, gpt-5, o3-mini)azure:assistant:<assistant id>- For Azure OpenAI Assistants (using Azure OpenAI API)azure:foundry-agent:<assistant id>- For Azure AI Foundry Agents (using Azure AI Projects SDK)
Vision-capable models (GPT-4o, GPT-4.1) use the standard azure:chat: provider type.
Azure Responses API
The Azure OpenAI Responses API is a stateful API that brings together the best capabilities from chat completions and assistants API in one unified experience. It provides advanced features like MCP servers, code interpreter, and background tasks.
Using the Responses API
To use the Azure Responses API with promptfoo, use the azure:responses provider type:
providers:
# Using the azure:responses alias (recommended)
# Note: deployment name must match your Azure deployment, not the model name
- id: azure:responses:my-gpt-4-1-deployment
config:
temperature: 0.7
instructions: 'You are a helpful assistant.'
response_format: file://./response-schema.json
# For newer v1 API, use 'preview' (default)
# For legacy API, use specific version like '2025-04-01-preview'
apiVersion: 'preview'
# Or using openai:responses with Azure configuration (legacy method)
- id: openai:responses:gpt-4.1
config:
apiHost: 'your-resource.openai.azure.com'
apiKey: '${AZURE_API_KEY}'
temperature: 0.7
instructions: 'You are a helpful assistant.'
Supported Responses Models
The Responses API supports all Azure OpenAI models:
- GPT-5 Series:
gpt-5,gpt-5-mini,gpt-5-nano,gpt-5-chat - GPT-4 Series:
gpt-4o,gpt-4o-mini,gpt-4.1,gpt-4.1-mini,gpt-4.1-nano - Reasoning Models:
o1,o1-mini,o1-pro,o3,o3-mini,o3-pro,o4-mini - Specialized Models:
computer-use-preview,gpt-image-1,codex-mini-latest - Deep Research Models:
o3-deep-research,o4-mini-deep-research
Responses API Features
Response Format with External Files
Load complex JSON schemas from external files for better organization:
providers:
- id: openai:responses:gpt-4.1
config:
apiHost: 'your-resource.openai.azure.com'
response_format: file://./schemas/response-schema.json
Example response-schema.json:
{
"type": "json_schema",
"name": "structured_output",
"schema": {
"type": "object",
"properties": {
"result": { "type": "string" },
"confidence": { "type": "number" }
},
"required": ["result", "confidence"],
"additionalProperties": false
}
}
Advanced Configuration
Instructions: Provide system-level instructions to guide model behavior:
config:
instructions: 'You are a helpful assistant specializing in technical documentation.'
Background Tasks: Enable asynchronous processing for long-running tasks:
config:
background: true
store: true
Chaining Responses: Chain multiple responses together for multi-turn conversations:
config:
previous_response_id: '{{previous_id}}'
MCP Servers: Connect to remote MCP servers for extended tool capabilities:
config:
tools:
- type: mcp
server_label: github
server_url: https://example.com/mcp-server
require_approval: never
headers:
Authorization: 'Bearer ${MCP_API_KEY}'
Code Interpreter: Enable code execution capabilities:
config:
tools:
- type: code_interpreter
container:
type: auto
Web Search: Enable web search capabilities:
config:
tools:
- type: web_search_preview
Image Generation: Use image generation with supported models:
config:
tools:
- type: image_generation
partial_images: 2 # For streaming partial images
Complete Responses API Example
Here's a comprehensive example using multiple Azure Responses API features:
# promptfooconfig.yaml
description: Azure Responses API evaluation
providers:
# Using the new azure:responses alias (recommended)
- id: azure:responses:gpt-4.1-deployment
label: azure-gpt-4.1
config:
temperature: 0.7
max_output_tokens: 2000
instructions: 'You are a helpful AI assistant.'
response_format: file://./response-format.json
tools:
- type: code_interpreter
container:
type: auto
- type: web_search_preview
metadata:
session: 'eval-001'
user: 'test-user'
store: true
# Reasoning model example
- id: azure:responses:o3-mini-deployment
label: azure-reasoning
config:
reasoning_effort: medium
max_completion_tokens: 4000
prompts:
- 'Analyze this data and provide insights: {{data}}'
- 'Write a Python function to solve: {{problem}}'
tests:
- vars:
data: 'Sales increased by 25% in Q3 compared to Q2'
assert:
- type: contains
value: 'growth'
- type: contains
value: '25%'
- vars:
problem: 'Calculate fibonacci sequence up to n terms'
assert:
- type: javascript
value: 'output.includes("def fibonacci") || output.includes("function fibonacci")'
- type: contains
value: 'recursive'
Additional Responses API Configuration
Streaming: Enable streaming for real-time output:
config:
stream: true
Parallel Tool Calls: Allow multiple tool calls in parallel:
config:
parallel_tool_calls: true
max_tool_calls: 5
Truncation: Configure how input is truncated when it exceeds limits:
config:
truncation: auto # or 'disabled'
Webhook URL: Set a webhook for async notifications:
config:
webhook_url: 'https://your-webhook.com/callback'
Responses API Limitations
- Web search tool support is still in development
- PDF file upload with
purpose: user_datarequires workaround (usepurpose: assistants) - Background mode requires
store: true - Some features may have region-specific availability
Environment Variables
The Azure OpenAI provider supports the following environment variables:
| Environment Variable | Config Key | Description | Required |
|---|---|---|---|
AZURE_API_KEY | apiKey | Your Azure OpenAI API key | No* |
AZURE_API_HOST | apiHost | API host | No |
AZURE_API_BASE_URL | apiBaseUrl | API base URL | No |
AZURE_BASE_URL | apiBaseUrl | Alternative API base URL | No |
AZURE_DEPLOYMENT_NAME | - | Default deployment name | Yes |
AZURE_CLIENT_ID | azureClientId | Azure AD application client ID | No* |
AZURE_CLIENT_SECRET | azureClientSecret | Azure AD application client secret | No* |
AZURE_TENANT_ID | azureTenantId | Azure AD tenant ID | No* |
AZURE_AUTHORITY_HOST | azureAuthorityHost | Azure AD authority host | No |
AZURE_TOKEN_SCOPE | azureTokenScope | Azure AD token scope | No |
* Either AZURE_API_KEY OR the combination of AZURE_CLIENT_ID, AZURE_CLIENT_SECRET, and AZURE_TENANT_ID must be provided.
Note: For API URLs, you only need to set one of AZURE_API_HOST, AZURE_API_BASE_URL, or AZURE_BASE_URL. If multiple are set, the provider will use them in that order of preference.
Default Deployment
If AZURE_DEPLOYMENT_NAME is set, it will be automatically used as the default deployment when no other provider is configured. This makes Azure OpenAI the default provider when:
- No OpenAI API key is present (
OPENAI_API_KEYis not set) - Azure authentication is configured (either via API key or client credentials)
AZURE_DEPLOYMENT_NAMEis set
For example, if you have these environment variables set:
AZURE_DEPLOYMENT_NAME=gpt-4o
AZURE_API_KEY=your-api-key
AZURE_API_HOST=your-host.openai.azure.com
Or these client credential environment variables:
AZURE_DEPLOYMENT_NAME=gpt-4o
AZURE_CLIENT_ID=your-client-id
AZURE_CLIENT_SECRET=your-client-secret
AZURE_TENANT_ID=your-tenant-id
AZURE_API_HOST=your-host.openai.azure.com
Then Azure OpenAI will be used as the default provider for all operations including:
- Dataset generation
- Grading
- Suggestions
- Synthesis
Embedding Models
Because embedding models are distinct from text generation models, to set a default embedding provider you must specify AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME.
Set this environment variable to the deployment name of your embedding model:
AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME=text-embedding-3-small
This deployment will automatically be used whenever embeddings are required, such as for similarity comparisons or dataset generation. You can also override the embedding provider in your configuration:
defaultTest:
options:
provider:
embedding:
id: azure:embedding:text-embedding-3-small-deployment
config:
apiHost: 'your-resource.openai.azure.com'
Note that any moderation tasks will still use the OpenAI API.
Configuration
The YAML configuration can override environment variables and set additional parameters:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
# Authentication (Option 1: API Key)
apiKey: 'your-api-key'
# Authentication (Option 2: Client Credentials)
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional
# OpenAI parameters
temperature: 0.5
max_tokens: 1024
All other OpenAI provider environment variables and configuration properties are supported.
Using Client Credentials
Install the @azure/identity package:
npm i @azure/identity
Then set the following configuration variables:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional
These credentials will be used to obtain an access token for the Azure OpenAI API.
The azureAuthorityHost defaults to 'https://login.microsoftonline.com' if not specified. The azureTokenScope defaults to 'https://cognitiveservices.azure.com/.default', the scope required to authenticate with Azure Cognitive Services.
Model-Graded Tests
Model-graded assertions such as factuality or llm-rubric use gpt-4.1-2025-04-14 by default. When AZURE_DEPLOYMENT_NAME is set (and OPENAI_API_KEY is not), promptfoo automatically uses the specified Azure deployment for grading. You can also explicitly override the grader as shown below.
The easiest way to do this for all your test cases is to add the defaultTest property to your config:
defaultTest:
options:
provider:
id: azure:chat:gpt-4o-deployment
config:
apiHost: 'xxxxxxx.openai.azure.com'
However, you can also do this for individual assertions:
# ...
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'
Or individual tests:
# ...
tests:
- vars:
# ...
options:
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
Using Text and Embedding Providers for Different Assertion Types
When you have tests that use both text-based assertions (like llm-rubric, answer-relevance) and embedding-based assertions (like similar), you can configure different Azure deployments for each type using the provider type map pattern:
defaultTest:
options:
provider:
# Text provider for llm-rubric, answer-relevance, factuality, etc.
text:
id: azure:chat:o4-mini-deployment
config:
apiHost: 'text-models.openai.azure.com'
# Embedding provider for similarity assertions
embedding:
id: azure:embedding:text-embedding-3-large
config:
apiHost: 'embedding-models.openai.azure.com'
Similarity
The similar assertion type requires an embedding model such as text-embedding-3-large or text-embedding-3-small. Be sure to specify a deployment with an embedding model, not a chat model, when overriding the grader.
For example, override the embedding deployment in your config:
defaultTest:
options:
provider:
embedding:
id: azure:embedding:text-embedding-3-small-deployment
config:
apiHost: 'your-resource.openai.azure.com'
AI Services
You may also specify data_sources to integrate with the Azure AI Search API.
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
deployment_id: 'abc123'
data_sources:
- type: azure_search
parameters:
endpoint: https://xxxxxxxx.search.windows.net
index_name: index123
authentication:
type: api_key
key: ''
For legacy Azure OpenAI API versions before 2024-02-15-preview, you can also specify deployment_id and dataSources, used to integrate with the Azure AI Search API.
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
deployment_id: 'abc123'
dataSources:
- type: AzureCognitiveSearch
parameters:
endpoint: '...'
key: '...'
indexName: '...'
Configuration Reference
These properties can be set under the provider config key:
General Configuration
| Name | Description |
|---|---|
| apiHost | API host (e.g., yourresource.openai.azure.com) |
| apiBaseUrl | Base URL of the API (used instead of host) |
| apiKey | API key for authentication |
| apiVersion | API version. Use 2024-10-21 or newer for vision support |
Azure-Specific Configuration
| Name | Description |
|---|---|
| azureClientId | Azure identity client ID |
| azureClientSecret | Azure identity client secret |
| azureTenantId | Azure identity tenant ID |
| azureAuthorityHost | Azure identity authority host |
| azureTokenScope | Azure identity token scope |
| deployment_id | Azure cognitive services deployment ID |
| dataSources | Azure cognitive services parameter for specifying data sources |
OpenAI Configuration
| Name | Description |
|---|---|
| o1 | Set to true if your Azure deployment uses an o1 model. (Deprecated, use isReasoningModel instead) |
| isReasoningModel | Set to true if your Azure deployment uses a reasoning model (o1, o3, o3-mini, o4-mini). Required for reasoning models |
| max_completion_tokens | Maximum tokens to generate for reasoning models. Only used when isReasoningModel is true |
| reasoning_effort | Controls reasoning depth: 'low', 'medium', or 'high'. Only used when isReasoningModel is true |
| temperature | Controls randomness (0-2). Not supported for reasoning models |
| max_tokens | Maximum tokens to generate. Not supported for reasoning models |
| top_p | Controls nucleus sampling (0-1) |
| frequency_penalty | Penalizes repeated tokens (-2 to 2) |
| presence_penalty | Penalizes new tokens based on presence (-2 to 2) |
| best_of | Generates multiple outputs and returns the best |
| functions | Array of functions available for the model to call |
| function_call | Controls how the model calls functions |
| response_format | Specifies output format (e.g., { type: "json_object" }) |
| stop | Array of sequences where the model will stop generating |
| passthrough | Additional parameters to send with the request |
Using Reasoning Models (o1, o3, o3-mini, o4-mini)
Azure OpenAI now supports reasoning models like o1, o3, o3-mini, and o4-mini. These models operate differently from standard models with specific requirements:
- They use
max_completion_tokensinstead ofmax_tokens - They don't support
temperature(it's ignored) - They accept a
reasoning_effortparameter ('low', 'medium', 'high')
Since Azure allows custom deployment names that don't necessarily reflect the underlying model type, you must explicitly set the isReasoningModel flag to true in your configuration when using reasoning models. This works with both chat and completion endpoints:
# For chat endpoints
providers:
- id: azure:chat:my-o4-mini-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
# Set this flag to true for reasoning models (o1, o3, o3-mini, o4-mini)
isReasoningModel: true
# Use max_completion_tokens instead of max_tokens
max_completion_tokens: 25000
# Optional: Set reasoning effort (default is 'medium')
reasoning_effort: 'medium'
# For completion endpoints
providers:
- id: azure:completion:my-o3-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
isReasoningModel: true
max_completion_tokens: 25000
reasoning_effort: 'high'
Note: The
o1flag is still supported for backward compatibility, butisReasoningModelis preferred as it more clearly indicates its purpose.
Using Variables with Reasoning Effort
You can use variables in your configuration to dynamically adjust the reasoning effort based on your test cases:
# Configure different reasoning efforts based on test variables
prompts:
- 'Solve this complex math problem: {{problem}}'
providers:
- id: azure:chat:my-o4-mini-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
isReasoningModel: true
max_completion_tokens: 25000
# This will be populated from the test case variables
reasoning_effort: '{{effort_level}}'
tests:
- vars:
problem: 'What is the integral of x²?'
effort_level: 'low'
- vars:
problem: 'Prove the Riemann hypothesis'
effort_level: 'high'
Troubleshooting
If you encounter this error when using reasoning models:
API response error: unsupported_parameter Unsupported parameter: 'max_tokens' is not supported with this model. Use 'max_completion_tokens' instead.
This means you're using a reasoning model without setting the isReasoningModel flag. Update your config as shown above.
Using Vision Models
Azure OpenAI supports vision-capable models like GPT-4o and GPT-4.1 for image analysis.
Configuration
providers:
- id: azure:chat:gpt-4o
config:
apiHost: 'your-resource-name.openai.azure.com'
apiVersion: '2024-10-21' # or newer for vision support
Image Input
Vision models require a specific message format. Images can be provided as:
- URLs: Direct image links
- Local files: Using
file://paths (automatically converted to base64) - Base64: Data URIs with format
_DATA
prompts:
- |
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What do you see in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "{{image_url}}"
}
}
]
}
]
tests:
- vars:
image_url: https://example.com/image.jpg # URL
- vars:
image_url: file://assets/image.jpg # Local file (auto base64)
- vars:
image_url: ... # Base64
Example
See the azure-openai example for a complete working example with image analysis. Use promptfooconfig.vision.yaml for vision-specific features.
Using DeepSeek Models
Azure AI supports DeepSeek models such as DeepSeek-R1. Like other reasoning models, these require specific configuration:
- Set
isReasoningModel: true - Use
max_completion_tokensinstead ofmax_tokens - Set API version to '2025-04-01-preview' (or latest available)
providers:
- id: azure:chat:DeepSeek-R1
config:
apiHost: 'your-deployment-name.services.ai.azure.com'
apiVersion: '2025-04-01-preview'
isReasoningModel: true
max_completion_tokens: 2048
reasoning_effort: 'medium' # Options: low, medium, high
For model-graded assertions, you can configure your defaultTest to use the same provider:
defaultTest:
options:
provider:
id: azure:chat:DeepSeek-R1
config:
apiHost: 'your-deployment-name.services.ai.azure.com'
apiVersion: '2025-04-01-preview'
isReasoningModel: true
max_completion_tokens: 2048
Adjust reasoning_effort to control response quality vs. speed: low for faster responses, medium for balanced performance (default), or high for more thorough reasoning on complex tasks.
Assistants
To evaluate an OpenAI assistant on Azure:
- Create a deployment for the assistant in the Azure portal
- Create an assistant in the Azure web UI
- Install the
@azure/openai-assistantspackage:
npm i @azure/openai-assistants
- Configure your provider with the assistant ID:
providers:
- id: azure:assistant:asst_E4GyOBYKlnAzMi19SZF2Sn8I
config:
apiHost: yourdeploymentname.openai.azure.com
Replace the assistant ID and deployment name with your actual values.
Function Tools with Assistants
Azure OpenAI Assistants support custom function tools. You can define functions in your configuration and provide callback implementations to handle them:
providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
# Load function tool definition
tools: file://tools/weather-function.json
# Define function callback inline
functionToolCallbacks:
# Use an external file
get_weather: file://callbacks/weather.js:getWeather
# Or use an inline function
get_weather: |
async function(args) {
try {
const parsedArgs = JSON.parse(args);
const location = parsedArgs.location;
const unit = parsedArgs.unit || 'celsius';
// Function implementation...
return JSON.stringify({
location,
temperature: 22,
unit,
condition: 'sunny'
});
} catch (error) {
return JSON.stringify({ error: String(error) });
}
}
Using Vector Stores with Assistants
Azure OpenAI Assistants support vector stores for enhanced file search capabilities. To use a vector store:
- Create a vector store in the Azure Portal or via the API
- Configure your assistant to use it:
providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
# Add tools for file search
tools:
- type: file_search
# Configure vector store IDs
tool_resources:
file_search:
vector_store_ids:
- 'your_vector_store_id'
# Optional parameters
temperature: 1
top_p: 1
apiVersion: '2025-04-01-preview'
Key requirements:
- Set up a tool with
type: file_search - Configure the
tool_resources.file_search.vector_store_idsarray with your vector store IDs - Set the appropriate
apiVersion(recommended:2025-04-01-previewor later)
Simple Example
Here's an example of a simple full assistant eval:
prompts:
- 'Write a tweet about {{topic}}'
providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
tests:
- vars:
topic: bananas
For complete working examples of Azure OpenAI Assistants with various tool configurations, check out the azure-openai-assistant example directory.
See the guide on How to evaluate OpenAI assistants for more information on how to compare different models, instructions, and more.
Azure AI Foundry Agents
Azure AI Foundry Agents provide an alternative way to use Azure OpenAI Assistants through the Azure AI Projects SDK (@azure/ai-projects). This provider uses native Azure SDK authentication and is designed for use with Azure AI Foundry projects.
Key Differences from Standard Azure Assistants
| Feature | Azure Assistant | Azure Foundry Agent |
|---|---|---|
| API Type | Direct HTTP calls to Azure OpenAI API | Azure AI Projects SDK (@azure/ai-projects) |
| Authentication | API key or Azure credentials | DefaultAzureCredential (Azure CLI, environment variables, managed identity) |
| Endpoint | Azure OpenAI endpoint (*.openai.azure.com) | Azure AI Project URL (*.services.ai.azure.com/api/projects/*) |
| Provider Format | azure:assistant:<assistant_id> | azure:foundry-agent:<assistant_id> |
Setup
- Install the required Azure SDK packages:
npm install @azure/ai-projects @azure/identity
-
Authenticate using one of these methods:
- Azure CLI (recommended for local development): Run
az login - Environment variables: Set Azure service principal credentials
- Managed Identity: Automatic in Azure-hosted environments
- Service Principal: Configure via environment variables
- Azure CLI (recommended for local development): Run
-
Set your Azure AI Project URL:
export AZURE_AI_PROJECT_URL="https://your-project.services.ai.azure.com/api/projects/your-project-id"
Alternatively, you can provide the projectUrl in your configuration file.
Basic Configuration
The provider uses the azure:foundry-agent:<assistant_id> format:
providers:
- id: azure:foundry-agent:asst_E4GyOBYKlnAzMi19SZF2Sn8I
config:
projectUrl: 'https://your-project.services.ai.azure.com/api/projects/your-project-id'
temperature: 0.7
max_tokens: 150
instructions: 'You are a helpful assistant that provides clear and concise answers.'
Configuration Options
The Azure Foundry Agent provider supports all the same configuration options as the standard Azure Assistant provider:
| Parameter | Description |
|---|---|
projectUrl | Azure AI Project URL (required, can also use AZURE_AI_PROJECT_URL env var) |
temperature | Controls randomness (0.0 to 2.0) |
max_tokens | Maximum tokens in response |
top_p | Nucleus sampling parameter |
tools | Function tools configuration (see below) |
tool_choice | Tool selection strategy (auto, none, or specific tool) |
tool_resources | Resource configuration (file search, code interpreter, etc.) |
instructions | Override system instructions for the assistant |
functionToolCallbacks | Custom function callbacks for tool execution |
modelName | Model name to override assistant's default model |
maxPollTimeMs | Maximum time to poll for completion (default: 300000ms / 5 minutes) |
response_format | Response format specification |
Function Tools with Azure Foundry Agents
Function tools work the same way as with standard Azure Assistants. You can define functions and provide callback implementations:
providers:
- id: azure:foundry-agent:your_assistant_id
config:
projectUrl: 'https://your-project.services.ai.azure.com/api/projects/your-project-id'
# Load function tool definitions
tools: file://tools/weather-function.json
# Define function callbacks
functionToolCallbacks:
# Use an external file
get_current_weather: file://callbacks/weather.js:getCurrentWeather
# Or use an inline function
get_forecast: |
async function(args) {
try {
const parsedArgs = JSON.parse(args);
const location = parsedArgs.location;
const days = parsedArgs.days || 7;
// Your implementation here
return JSON.stringify({
location,
forecast: [
{ day: 'Monday', temperature: 72, condition: 'sunny' },
{ day: 'Tuesday', temperature: 68, condition: 'cloudy' }
]
});
} catch (error) {
return JSON.stringify({ error: String(error) });
}
}
The function callbacks receive two parameters:
args: String containing JSON-encoded function argumentscontext: Object with{ threadId, runId, assistantId, provider }for advanced use cases
Using Vector Stores with Azure Foundry Agents
Vector stores work the same way as with standard Azure Assistants:
providers:
- id: azure:foundry-agent:your_assistant_id
config:
projectUrl: 'https://your-project.services.ai.azure.com/api/projects/your-project-id'
# Add tools for file search
tools:
- type: file_search
# Configure vector store IDs
tool_resources:
file_search:
vector_store_ids:
- 'your_vector_store_id'
# Optional parameters
temperature: 1
top_p: 1
Environment Variables
| Variable | Description |
|---|---|
AZURE_AI_PROJECT_URL | Your Azure AI Project URL (can be overridden in config) |
AZURE_CLIENT_ID | Azure service principal client ID (for service principal auth) |
AZURE_CLIENT_SECRET | Azure service principal secret (for service principal auth) |
AZURE_TENANT_ID | Azure tenant ID (for service principal auth) |
Complete Example
Here's a complete example configuration:
description: 'Azure Foundry Agent evaluation'
providers:
- id: azure:foundry-agent:asst_uRGMedGFDehLkjJJaq51J9GY
config:
projectUrl: 'https://my-project.services.ai.azure.com/api/projects/my-project-id'
temperature: 0.7
max_tokens: 150
instructions: 'You are a helpful assistant that provides clear and concise answers.'
prompts:
- '{{question}}'
tests:
- vars:
question: 'What is the capital of France?'
assert:
- type: contains
value: 'Paris'
- vars:
question: 'Explain what photosynthesis is in simple terms.'
assert:
- type: contains
value: 'plants'
- type: contains
value: 'sunlight'
Error Handling
The Azure Foundry Agent provider includes comprehensive error handling:
- Content Filter Detection: Automatically detects and reports content filtering events with guardrails metadata
- Rate Limit Handling: Identifies rate limit errors for proper retry handling
- Service Error Detection: Detects transient service errors (500, 502, 503, 504)
- Timeout Management: Configurable polling timeout via
maxPollTimeMs
Caching
The provider supports caching to improve performance and reduce API calls. Results are cached based on:
- Assistant configuration (instructions, model, temperature, etc.)
- Tool definitions
- Input prompt
Enable caching globally in your configuration:
cache: true
providers:
- id: azure:foundry-agent:your_assistant_id
config:
projectUrl: 'https://your-project.services.ai.azure.com/api/projects/your-project-id'
When to Use Azure Foundry Agents
Use Azure Foundry Agents when:
- You're working within Azure AI Foundry projects
- You prefer native Azure SDK authentication (
DefaultAzureCredential) - You're using managed identities or service principals for authentication
- You want to leverage Azure AI Projects features
Use standard Azure Assistants when:
- You're using Azure OpenAI Service directly (not through AI Foundry)
- You have an existing Azure OpenAI resource and endpoint
- You prefer API key-based authentication
Example Repository
For complete working examples, check out the azure-foundry-agent example directory.
See Also
- OpenAI Provider - The base provider that Azure shares configuration with
- Evaluating Assistants - Learn how to compare different models and instructions
- Azure OpenAI Assistant Examples - Complete working examples with various tool configurations
- Azure OpenAI Example - Example configurations including vision model support