Mistral AI
The Mistral AI API provides access to cutting-edge language models that deliver exceptional performance at competitive pricing. Mistral offers a compelling alternative to OpenAI and other providers, with specialized models for reasoning, code generation, and multimodal tasks.
Mistral is particularly valuable for:
- Cost-effective AI integration with pricing up to 8x lower than competitors
- Advanced reasoning with Magistral models that show step-by-step thinking
- Code generation excellence with Codestral models supporting 80+ programming languages
- Multimodal capabilities for text and image processing
- Enterprise deployments with on-premises options requiring just 4 GPUs
- Multilingual applications with native support for 12+ languages
Mistral Medium 3 offers GPT-4 class performance at $0.40/$2.00 per million tokens (input/output), representing significant cost savings compared to OpenAI's $2.50/$10.00 pricing for similar capabilities.
API Key
To use Mistral AI, you need to set the MISTRAL_API_KEY
environment variable, or specify the apiKey
in the provider configuration.
Example of setting the environment variable:
export MISTRAL_API_KEY=your_api_key_here
Configuration Options
The Mistral provider supports extensive configuration options:
Basic Options
providers:
- id: mistral:mistral-large-latest
config:
# Model behavior
temperature: 0.7 # Creativity (0.0-2.0)
top_p: 0.95 # Nucleus sampling (0.0-1.0)
max_tokens: 4000 # Response length limit
# Advanced options
safe_prompt: true # Content filtering
random_seed: 42 # Deterministic outputs
frequency_penalty: 0.1 # Reduce repetition
presence_penalty: 0.1 # Encourage diversity
JSON Mode
Force structured JSON output:
providers:
- id: mistral:mistral-large-latest
config:
response_format:
type: 'json_object'
temperature: 0.3 # Lower temp for consistent JSON
tests:
- vars:
prompt: "Extract name, age, and occupation from: 'John Smith, 35, engineer'. Return as JSON."
assert:
- type: is-json
- type: javascript
value: JSON.parse(output).name === "John Smith"
Authentication Configuration
providers:
# Option 1: Environment variable (recommended)
- id: mistral:mistral-large-latest
# Option 2: Direct API key (not recommended for production)
- id: mistral:mistral-large-latest
config:
apiKey: 'your-api-key-here'
# Option 3: Custom environment variable
- id: mistral:mistral-large-latest
config:
apiKeyEnvar: 'CUSTOM_MISTRAL_KEY'
# Option 4: Custom endpoint
- id: mistral:mistral-large-latest
config:
apiHost: 'custom-proxy.example.com'
apiBaseUrl: 'https://custom-api.example.com/v1'
Advanced Model Configuration
providers:
# Reasoning model with optimal settings
- id: mistral:magistral-medium-latest
config:
temperature: 0.7
top_p: 0.95
max_tokens: 40960 # Full context for reasoning
# Code generation with FIM support
- id: mistral:codestral-latest
config:
temperature: 0.2 # Low for consistent code
max_tokens: 8000
stop: ['```'] # Stop at code block end
# Multimodal configuration
- id: mistral:pixtral-12b
config:
temperature: 0.5
max_tokens: 2000
# Image processing options handled automatically
Environment Variables Reference
Variable | Description | Example |
---|---|---|
MISTRAL_API_KEY | Your Mistral API key (required) | sk-1234... |
MISTRAL_API_HOST | Custom hostname for proxy setup | api.example.com |
MISTRAL_API_BASE_URL | Full base URL override | https://api.example.com/v1 |
Model Selection
You can specify which Mistral model to use in your configuration. The following models are available:
Chat Models
Premier Models
Model | Context | Input Price | Output Price | Best For |
---|---|---|---|---|
mistral-large-latest | 128k | $2.00/1M | $6.00/1M | Complex reasoning, enterprise tasks |
mistral-medium-latest | 128k | $0.40/1M | $2.00/1M | Balanced performance and cost |
codestral-latest | 256k | $0.30/1M | $0.90/1M | Code generation, 80+ languages |
magistral-medium-latest | 40k | $2.00/1M | $5.00/1M | Advanced reasoning, step-by-step thinking |
Free Models
Model | Context | Input Price | Output Price | Best For |
---|---|---|---|---|
mistral-small-latest | 128k | $0.10/1M | $0.30/1M | General tasks, cost-effective |
magistral-small-latest | 40k | $0.50/1M | $1.50/1M | Reasoning on a budget |
open-mistral-nemo | 128k | $0.15/1M | $0.15/1M | Multilingual, research |
pixtral-12b | 128k | $0.15/1M | $0.15/1M | Vision + text, multimodal |
Legacy Models (Deprecated)
open-mistral-7b
,mistral-tiny
,mistral-tiny-2312
open-mistral-nemo
,open-mistral-nemo-2407
,mistral-tiny-2407
,mistral-tiny-latest
mistral-small-2402
mistral-medium-2312
,mistral-medium
mistral-large-2402
mistral-large-2407
codestral-2405
codestral-mamba-2407
,open-codestral-mamba
,codestral-mamba-latest
open-mixtral-8x7b
,mistral-small
,mistral-small-2312
open-mixtral-8x22b
,open-mixtral-8x22b-2404
Embedding Model
mistral-embed
- $0.10/1M tokens - 8k context
Here's an example config that compares different Mistral models:
providers:
- mistral:mistral-medium-latest
- mistral:mistral-small-latest
- mistral:open-mistral-nemo
- mistral:magistral-medium-latest
- mistral:magistral-small-latest
Reasoning Models
Mistral's Magistral models are specialized reasoning models announced in June 2025. These models excel at multi-step logic, transparent reasoning, and complex problem-solving across multiple languages.
Key Features of Magistral Models
- Chain-of-thought reasoning: Models provide step-by-step reasoning traces before arriving at final answers
- Multilingual reasoning: Native reasoning capabilities across English, French, Spanish, German, Italian, Arabic, Russian, Chinese, and more
- Transparency: Traceable thought processes that can be followed and verified
- Domain expertise: Optimized for structured calculations, programmatic logic, decision trees, and rule-based systems
Magistral Model Variants
- Magistral Small (
magistral-small-2506
): 24B parameter open-source version under Apache 2.0 license - Magistral Medium (
magistral-medium-2506
): More powerful enterprise version with enhanced reasoning capabilities
Usage Recommendations
For reasoning tasks, consider using these parameters for optimal performance:
providers:
- id: mistral:magistral-medium-latest
config:
temperature: 0.7
top_p: 0.95
max_tokens: 40960 # Recommended for reasoning tasks
Multimodal Capabilities
Mistral offers vision-capable models that can process both text and images:
Image Understanding
Use pixtral-12b
for multimodal tasks:
providers:
- id: mistral:pixtral-12b
config:
temperature: 0.7
max_tokens: 1000
tests:
- vars:
prompt: 'What do you see in this image?'
image: '...'
Supported Image Formats
- JPEG, PNG, GIF, WebP
- Maximum size: 20MB per image
- Resolution: Up to 2048x2048 pixels optimal
Function Calling & Tool Use
Mistral models support advanced function calling for building AI agents and tools:
providers:
- id: mistral:mistral-large-latest
config:
temperature: 0.1
tools:
- type: function
function:
name: get_weather
description: Get current weather for a location
parameters:
type: object
properties:
location:
type: string
description: City name
unit:
type: string
enum: ['celsius', 'fahrenheit']
required: ['location']
tests:
- vars:
prompt: "What's the weather like in Paris?"
assert:
- type: contains
value: 'get_weather'
Tool Calling Best Practices
- Use low temperature (0.1-0.3) for consistent tool calls
- Provide detailed function descriptions
- Include parameter validation in your tools
- Handle tool call errors gracefully
Code Generation
Mistral's Codestral models excel at code generation across 80+ programming languages:
Fill-in-the-Middle (FIM)
providers:
- id: mistral:codestral-latest
config:
temperature: 0.2
max_tokens: 2000
tests:
- vars:
prompt: |
<fim_prefix>def calculate_fibonacci(n):
if n <= 1:
return n
<fim_suffix>
# Test the function
print(calculate_fibonacci(10))
<fim_middle>
assert:
- type: contains
value: 'fibonacci'
Code Generation Examples
tests:
- description: 'Python API endpoint'
vars:
prompt: 'Create a FastAPI endpoint that accepts a POST request with user data and saves it to a database'
assert:
- type: contains
value: '@app.post'
- type: contains
value: 'async def'
- description: 'React component'
vars:
prompt: 'Create a React component for a user profile card with name, email, and avatar'
assert:
- type: contains
value: 'export'
- type: contains
value: 'useState'
Complete Working Examples
Example 1: Multi-Model Comparison
description: 'Compare reasoning capabilities across Mistral models'
providers:
- mistral:magistral-medium-latest
- mistral:magistral-small-latest
- mistral:mistral-large-latest
- mistral:mistral-small-latest
prompts:
- 'Solve this step by step: {{problem}}'
tests:
- vars:
problem: "A company has 100 employees. 60% work remotely, 25% work hybrid, and the rest work in office. If remote workers get a $200 stipend and hybrid workers get $100, what's the total monthly stipend cost?"
assert:
- type: llm-rubric
value: 'Shows clear mathematical reasoning and arrives at correct answer ($13,500)'
- type: cost
threshold: 0.10
Example 2: Code Review Assistant
description: 'AI-powered code review using Codestral'
providers:
- id: mistral:codestral-latest
config:
temperature: 0.3
max_tokens: 1500
prompts:
- |
Review this code for bugs, security issues, and improvements:
```{{language}}
{{code}}
```
Provide specific feedback on:
1. Potential bugs
2. Security vulnerabilities
3. Performance improvements
4. Code style and best practices
tests:
- vars:
language: 'python'
code: |
import subprocess
def run_command(user_input):
result = subprocess.run(user_input, shell=True, capture_output=True)
return result.stdout.decode()
assert:
- type: contains
value: 'security'
- type: llm-rubric
value: 'Identifies shell injection vulnerability and suggests safer alternatives'
Example 3: Multimodal Document Analysis
description: 'Analyze documents with text and images'
providers:
- id: mistral:pixtral-12b
config:
temperature: 0.5
max_tokens: 2000
tests:
- vars:
prompt: |
Analyze this document image and:
1. Extract key information
2. Summarize main points
3. Identify any data or charts
image_url: 'https://example.com/financial-report.png'
assert:
- type: llm-rubric
value: 'Accurately extracts text and data from the document image'
- type: length
min: 200
Authentication & Setup
Environment Variables
# Required
export MISTRAL_API_KEY="your-api-key-here"
# Optional - for custom endpoints
export MISTRAL_API_BASE_URL="https://api.mistral.ai/v1"
export MISTRAL_API_HOST="api.mistral.ai"
Getting Your API Key
- Visit console.mistral.ai
- Sign up or log in to your account
- Navigate to API Keys section
- Click Create new key
- Copy and securely store your key
- Never commit API keys to version control
- Use environment variables or secure vaults
- Rotate keys regularly
- Monitor usage for unexpected spikes
Performance Optimization
Model Selection Guide
Use Case | Recommended Model | Why |
---|---|---|
Cost-sensitive apps | mistral-small-latest | Best price/performance ratio |
Complex reasoning | magistral-medium-latest | Step-by-step thinking |
Code generation | codestral-latest | Specialized for programming |
Vision tasks | pixtral-12b | Multimodal capabilities |
High-volume production | mistral-medium-latest | Balanced cost and quality |
Context Window Optimization
providers:
- id: mistral:magistral-medium-latest
config:
max_tokens: 8000 # Leave room for 32k input context
temperature: 0.7
Cost Management
# Monitor costs across models
defaultTest:
assert:
- type: cost
threshold: 0.05 # Alert if cost > $0.05 per test
providers:
- id: mistral:mistral-small-latest # Most cost-effective
config:
max_tokens: 500 # Limit output length
Troubleshooting
Common Issues
Authentication Errors
Error: 401 Unauthorized
Solution: Verify your API key is correctly set:
echo $MISTRAL_API_KEY
# Should output your key, not empty
Rate Limiting
Error: 429 Too Many Requests
Solutions:
- Implement exponential backoff
- Use smaller batch sizes
- Consider upgrading your plan
# Reduce concurrent requests
providers:
- id: mistral:mistral-large-latest
config:
timeout: 30000 # Increase timeout
Context Length Exceeded
Error: Context length exceeded
Solutions:
- Truncate input text
- Use models with larger context windows
- Implement text summarization for long inputs
providers:
- id: mistral:mistral-medium-latest # 128k context
config:
max_tokens: 4000 # Leave room for input
Model Availability
Error: Model not found
Solution: Check model names and use latest versions:
providers:
- mistral:mistral-large-latest # ✅ Use latest
# - mistral:mistral-large-2402 # ❌ Deprecated
Debugging Tips
-
Enable debug logging:
export DEBUG=promptfoo:*
-
Test with simple prompts first:
tests:
- vars:
prompt: 'Hello, world!' -
Check token usage:
tests:
- assert:
- type: cost
threshold: 0.01
Getting Help
- Documentation: docs.mistral.ai
- Community: Discord
- Support: [email protected]
- Status: status.mistral.ai
Working Examples
Ready-to-use examples are available in our GitHub repository:
📋 Complete Mistral Example Collection
Run any of these examples locally:
npx promptfoo@latest init --example mistral
Individual Examples:
- AIME2024 Mathematical Reasoning - Evaluate Magistral models on advanced mathematical competition problems
- Model Comparison - Compare reasoning across Magistral and traditional models
- Function Calling - Demonstrate tool use and function calling
- JSON Mode - Structured output generation
- Code Generation - Multi-language code generation with Codestral
- Reasoning Tasks - Advanced step-by-step problem solving
- Multimodal - Vision capabilities with Pixtral
Quick Start
# Try the basic comparison
npx promptfoo@latest eval -c https://raw.githubusercontent.com/promptfoo/promptfoo/main/examples/mistral/promptfooconfig.comparison.yaml
# Test mathematical reasoning with Magistral models
npx promptfoo@latest eval -c https://raw.githubusercontent.com/promptfoo/promptfoo/main/examples/mistral/promptfooconfig.aime2024.yaml
# Test reasoning capabilities
npx promptfoo@latest eval -c https://raw.githubusercontent.com/promptfoo/promptfoo/main/examples/mistral/promptfooconfig.reasoning.yaml
Found a great use case? Contribute your example to help the community!