Tool Calling
Tool calling (also known as function calling) allows LLMs to invoke functions that you define, rather than only generating text responses.
Overview
How It Works
- You define tools - Tell the model what functions are available by providing their names, descriptions, and parameter schemas
- Model requests a tool call - The model outputs a function name and arguments. This name is an identifier that maps to a function in your code—the model doesn't execute anything itself
- Your code executes the function - Your application matches the function name to real code and runs it with the provided arguments
- Results go back to the model - You send the function's output back to the model, which uses it to generate its final response
User: "What's the weather in San Francisco?"
↓
Model outputs: { tool: "get_weather", args: { location: "San Francisco" } }
↓
Your code runs: getWeather("San Francisco") → "72°F, sunny"
↓
You send result back to model
↓
Model responds: "It's currently 72°F and sunny in San Francisco."
Configuration
There are two parts to configuring tool calling:
-
Tool definitions - Describe the functions available to the model: their names, descriptions, and parameter schemas. The model uses these to decide which tool to call and what arguments to pass.
-
Tool choice - Control when the model uses tools: let it decide automatically, force it to use a specific tool, or disable tools entirely.
While many providers have standardized around OpenAI's tool format, some maintain their own syntax:
| Provider | Native Format |
|---|---|
| OpenAI/Azure/Groq/Ollama | { type: 'function', function: { name, parameters } } |
| Anthropic | { name, input_schema } |
| AWS Bedrock | { toolSpec: { name, inputSchema: { json } } } |
{ functionDeclarations: [{ name, parameters }] } |
Promptfoo uses OpenAI's tool format as the standard. For built-in providers (OpenAI, Anthropic, Bedrock, Google, etc.), promptfoo automatically converts tool definitions to the required native format. For the HTTP provider, set transformToolsFormat to tell promptfoo what format the target API expects.
Reusing tools between providers
Define your tools once in OpenAI format and reuse them across all providers using YAML anchors and aliases. An anchor (&tools) saves a value, and an alias (*tools) references it elsewhere:
providers:
- id: openai:gpt-4o
config:
tools: &tools # Anchor: define tools once
- type: function
function:
name: get_weather
description: Get current weather for a location
parameters:
type: object
properties:
location: { type: string }
required: [location]
- id: anthropic:claude-sonnet-4-20250514
config:
tools: *tools # Alias: reuse the same tools
- id: google:gemini-2.0-flash
config:
tools: *tools # Alias: works here too
Defining Tools
Define tools in OpenAI format:
providers:
- id: openai:gpt-4
config:
tools:
- type: function
function:
name: get_weather
description: Get the current weather for a location
parameters:
type: object
properties:
location:
type: string
description: City name (e.g., "San Francisco, CA")
unit:
type: string
enum: [celsius, fahrenheit]
description: Temperature unit
required:
- location
Fields
| Field | Type | Required | Description |
|---|---|---|---|
type | string | Yes | Must be 'function' |
function.name | string | Yes | The function name (used by the model to call it) |
function.description | string | No | Description of what the function does |
function.parameters | object | No | JSON Schema defining the function's parameters |
function.strict | boolean | No | Enable strict schema validation (OpenAI/Anthropic only) |
Full JSON Schema Support
The parameters field supports full JSON Schema draft-07, including:
tools:
- type: function
function:
name: complex_function
parameters:
type: object
properties:
coordinates:
$ref: '#/$defs/coordinate'
tags:
type: array
items:
type: string
minItems: 1
required: [coordinates]
$defs:
coordinate:
type: object
properties:
lat:
type: number
minimum: -90
maximum: 90
lon:
type: number
minimum: -180
maximum: 180
required: [lat, lon]
Strict Mode
Enable strict schema validation for providers that support it:
tools:
- type: function
function:
name: get_weather
strict: true # Guarantees output matches schema exactly
parameters:
type: object
properties:
location:
type: string
required: [location]
additionalProperties: false # Required for strict mode
Strict mode provider support:
| Provider | Support |
|---|---|
| OpenAI | Full support — guarantees output matches schema |
| Anthropic | Enables structured outputs beta feature |
| Bedrock/Google | Ignored (not supported) |
Tool Choice
Tool choice controls when and how the model uses the tools you've defined. By default, the model decides on its own whether a tool call is appropriate (auto). You can override this to force tool usage, disable it, or constrain the model to a specific tool — useful for testing that the model calls the right function or for pipelines where a tool call is always expected.
providers:
- id: openai:gpt-4
config:
tools:
- type: function
function:
name: get_weather
parameters: { ... }
tool_choice: required # Model must call a tool
Modes
Tool choice uses OpenAI's native format:
| Value | Description |
|---|---|
auto | Model decides whether to call a tool based on the prompt (default) |
none | Model cannot call any tools, even if they are defined — useful for A/B testing tool use vs. plain text responses |
required | Model must call at least one tool — useful when you always expect a structured tool response |
{ type: function, function: { name: get_weather } } | Model must call the specified tool — useful for testing a particular function |
Examples
# Let the model decide
tool_choice: auto
# Force the model to use tools
tool_choice: required
# Force a specific tool
tool_choice:
type: function
function:
name: get_weather
# Disable tools for this request
tool_choice: none
Provider Transformations
Tool Definition Mappings
For built-in providers, tool definitions in OpenAI format are automatically converted to the provider's native format. For the HTTP provider, set transformToolsFormat to specify the target format. If you pass tool definitions that don't match OpenAI format, they are passed through directly without transformation.
| OpenAI Field | Anthropic | Bedrock | |
|---|---|---|---|
function.name | name | toolSpec.name | functionDeclarations[].name |
function.description | description | toolSpec.description | functionDeclarations[].description |
function.parameters | input_schema | toolSpec.inputSchema.json | functionDeclarations[].parameters |
function.strict | (ignored) | (ignored) | (ignored) |
Tool Choice Mappings
| OpenAI (default) | Anthropic | Bedrock | |
|---|---|---|---|
'auto' | { type: 'auto' } | { auto: {} } | { functionCallingConfig: { mode: 'AUTO' } } |
'none' | { type: 'auto' } | (omitted) | { functionCallingConfig: { mode: 'NONE' } } |
'required' | { type: 'any' } | { any: {} } | { functionCallingConfig: { mode: 'ANY' } } |
{ type: 'function', function: { name } } | { type: 'tool', name } | { tool: { name } } | { functionCallingConfig: { mode: 'ANY', allowedFunctionNames: [...] } } |
Other Provider Formats
You can also use provider-native formats directly. They pass through unchanged without transformation:
# Anthropic native format - passes through as-is
providers:
- id: anthropic:claude-sonnet-4-20250514
config:
tools:
- name: get_weather
description: Get weather
input_schema:
type: object
properties:
location: { type: string }
Promptfoo auto-detects the format. If tools are in OpenAI format (type: 'function' with function.name), they can be transformed. Otherwise, they pass through unchanged.
Loading Tools from Files
Tools can be loaded from external files:
providers:
- id: openai:gpt-4
config:
tools: file://tools/my-tools.json
tools/my-tools.json:
[
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather",
"parameters": {
"type": "object",
"properties": {
"location": { "type": "string" }
}
}
}
}
]
HTTP Provider with Tools
For custom HTTP endpoints, use the transformToolsFormat option to automatically convert OpenAI-format tools to the format your endpoint expects.
OpenAI-Compatible Endpoints
providers:
- id: http://localhost:8080/v1/chat/completions
config:
method: POST
headers:
Content-Type: application/json
transformToolsFormat: openai # Tools already in OpenAI format, pass through
body:
model: gpt-4
messages: '{{ prompt }}'
tools: '{{ tools }}'
tool_choice: '{{ tool_choice }}'
tools:
- type: function
function:
name: get_weather
description: Get weather for a location
parameters:
type: object
properties:
location: { type: string }
tool_choice: required
Anthropic-Compatible Endpoints
providers:
- id: http://localhost:8080/v1/messages
config:
method: POST
headers:
Content-Type: application/json
x-api-key: '{{ env.ANTHROPIC_API_KEY }}'
anthropic-version: '2023-06-01'
transformToolsFormat: anthropic # Transforms OpenAI → Anthropic format
body:
model: claude-sonnet-4-20250514
max_tokens: 1024
messages: '{{ prompt }}'
tools: '{{ tools }}'
tool_choice: '{{ tool_choice }}'
tools:
- type: function
function:
name: get_weather
description: Get weather for a location
parameters:
type: object
properties:
location:
type: string
description: City name
required:
- location
tool_choice: required
The transformToolsFormat option accepts: openai, anthropic, bedrock, or google. The {{ tools }} and {{ tool_choice }} template variables are automatically serialized as JSON when injected into the request body.
Native Format Pass-Through
If your endpoint requires a specific format, you can define tools in that format directly and omit transformToolsFormat. Tools pass through unchanged:
providers:
- id: http://localhost:8080/v1/messages
config:
method: POST
headers:
Content-Type: application/json
# No transformToolsFormat - tools pass through as-is
body:
model: claude-sonnet-4-20250514
messages: '{{ prompt }}'
tools: '{{ tools }}'
tools:
# Native Anthropic format with input_schema
- name: get_weather
description: Get weather for a location
input_schema:
type: object
properties:
location:
type: string
required:
- location
This is useful when your endpoint expects a custom or non-standard tool format.
See Also
- OpenAI Provider - OpenAI-specific tool features
- Anthropic Provider - Anthropic tool calling
- AWS Bedrock Provider - Bedrock Converse API tools
- Google Provider - Gemini function calling
- Custom HTTP Provider - Tools with custom endpoints