Skip to main content

Advanced Usage

This page covers advanced ModelAudit features including cloud storage integration, CI/CD workflows, and programmatic usage.

Authentication and Configuration

ModelAudit uses environment variables for authentication with cloud services and model registries.

Cloud & Artifact Registry Authentication

Authentication for all remote services is now handled exclusively via environment variables.

HuggingFace

  • HF_TOKEN: Your HuggingFace Hub token for accessing private models.
# Authenticate for private models
export HF_TOKEN=your_token_here
promptfoo scan-model hf://your-org/private-model

JFrog Artifactory

  • JFROG_URL: The base URL of your JFrog Artifactory instance.
  • JFROG_API_TOKEN or JFROG_ACCESS_TOKEN: Your API or access token.
# Authenticate using an API token
export JFROG_URL="https://your-domain.jfrog.io"
export JFROG_API_TOKEN="your-api-token"
promptfoo scan-model "https://your-domain.jfrog.io/artifactory/repo/model.pkl"

MLflow Model Registry

  • MLFLOW_TRACKING_URI: The URI of your MLflow tracking server.
  • MLFLOW_TRACKING_USERNAME / MLFLOW_TRACKING_PASSWORD: Credentials for MLflow authentication.
# Authenticate with MLflow
export MLFLOW_TRACKING_URI="https://your-mlflow-server.com"
export MLFLOW_TRACKING_USERNAME="your-username"
export MLFLOW_TRACKING_PASSWORD="your-password"
promptfoo scan-model models:/model-name/version

Amazon S3

  • AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_DEFAULT_REGION: Standard AWS credentials.
export AWS_ACCESS_KEY_ID="your-access-key"
export AWS_SECRET_ACCESS_KEY="your-secret-key"
export AWS_DEFAULT_REGION="us-east-1"
promptfoo scan-model s3://my-bucket/model.pkl

Google Cloud Storage

  • GOOGLE_APPLICATION_CREDENTIALS: Path to your service account key file.
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account-key.json"
promptfoo scan-model gs://my-bucket/model.pt

Cloudflare R2

  • AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY: Your R2 credentials.
  • AWS_ENDPOINT_URL: The S3-compatible endpoint for your R2 account.
export AWS_ACCESS_KEY_ID="your-r2-access-key"
export AWS_SECRET_ACCESS_KEY="your-r2-secret-key"
export AWS_ENDPOINT_URL="https://your-account.r2.cloudflarestorage.com"
promptfoo scan-model r2://my-bucket/model.safetensors

Migration from Deprecated Flags

The following CLI flags have been removed and replaced by environment variables. Attempting to use them will result in an error.

Removed FlagReplacement Environment Variable
--jfrog-api-tokenJFROG_API_TOKEN
--jfrog-access-tokenJFROG_ACCESS_TOKEN
--registry-uriJFROG_URL or MLFLOW_TRACKING_URI

Why the change? Using environment variables is more secure than passing secrets as CLI flags, as it prevents them from being exposed in shell history or process lists. This aligns with industry best practices for managing credentials.

Remote Model Scanning

ModelAudit can scan models directly from various remote sources without manual downloading.

HuggingFace

Scan public or private models from the HuggingFace Hub.

# Public model
promptfoo scan-model https://huggingface.co/bert-base-uncased

# Private model (requires HF_TOKEN to be set)
promptfoo scan-model hf://your-org/private-model

Cloud Storage (S3, GCS, R2)

Scan models stored in cloud buckets. See the Authentication section for setup.

# Scan from S3
promptfoo scan-model s3://my-bucket/model.pkl

# Scan from Google Cloud Storage
promptfoo scan-model gs://my-bucket/model.pt

# Scan from Cloudflare R2
promptfoo scan-model r2://my-bucket/model.safetensors

Model Registries (MLflow, JFrog)

Scan models from MLflow or JFrog Artifactory. See the Authentication section for setup.

# Scan from MLflow
promptfoo scan-model models:/MyModel/Latest

# Scan from JFrog Artifactory
promptfoo scan-model "https://your-domain.jfrog.io/artifactory/models/model.pkl"

DVC Integration

ModelAudit automatically resolves DVC pointer files:

# Scans the actual model file referenced by the .dvc file
promptfoo scan-model model.pkl.dvc

Configuration Options

ModelAudit's behavior can be customized through command-line options. While configuration files are not currently supported, you can achieve similar results using CLI flags:

# Set blacklist patterns
promptfoo scan-model models/ \
--blacklist "deepseek" \
--blacklist "qwen" \
--blacklist "unsafe_model"

# Set resource limits
promptfoo scan-model models/ \
--max-size 1GB \
--timeout 600

# Combine multiple options
promptfoo scan-model models/ \
--blacklist "suspicious_pattern" \
--max-size 1GB \
--timeout 600 \
--verbose

# Enable strict mode for enhanced security validation
promptfoo scan-model model.pkl --strict

# Strict mode with additional output options
promptfoo scan-model models/ \
--strict \
--format sarif \
--output security-scan.sarif

CI/CD Integration

GitHub Actions

# .github/workflows/model-security.yml
name: Model Security Scan

on:
push:
paths:
- 'models/**'
- '**.pkl'
- '**.h5'
- '**.pb'
- '**.pt'
- '**.pth'

jobs:
scan:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4

- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'

- name: Install dependencies
run: |
npm install -g promptfoo
pip install modelaudit[all]

- name: Scan models
run: promptfoo scan-model models/ --format sarif --output model-scan.sarif

- name: Upload SARIF to GitHub Advanced Security
uses: github/codeql-action/upload-sarif@v3
if: always()
with:
sarif_file: model-scan.sarif
category: model-security

- name: Upload scan results as artifact
uses: actions/upload-artifact@v4
if: always()
with:
name: model-scan-results
path: model-scan.sarif

GitLab CI

# .gitlab-ci.yml
model_security_scan:
stage: test
image: python:3.10
script:
- pip install modelaudit[all]
- npm install -g promptfoo
- promptfoo scan-model models/ --format json --output scan-results.json
- if grep -q '"severity":"critical"' scan-results.json; then echo "Critical security issues found!"; exit 1; fi
artifacts:
paths:
- scan-results.json
when: always
only:
changes:
- models/**
- '**/*.pkl'
- '**/*.h5'
- '**/*.pb'
- '**/*.pt'
- '**/*.pth'

Pre-commit Hook

# .pre-commit-config.yaml
repos:
- repo: local
hooks:
- id: modelaudit
name: ModelAudit
entry: promptfoo scan-model
language: system
files: '\.(pkl|h5|pb|pt|pth|keras|hdf5|json|yaml|yml|zip|onnx|safetensors|bin|tflite|msgpack|pmml|joblib|npy|gguf|ggml)$'
pass_filenames: true

Programmatic Usage

You can use ModelAudit programmatically in your Python code:

from modelaudit.core import scan_model_directory_or_file

# Scan a single model
results = scan_model_directory_or_file("path/to/model.pkl")

# Scan a HuggingFace model URL
results = scan_model_directory_or_file("https://huggingface.co/bert-base-uncased")

# Check for issues
if results["issues"]:
print(f"Found {len(results['issues'])} issues:")
for issue in results["issues"]:
print(f"- {issue['severity'].upper()}: {issue['message']}")
else:
print("No issues found!")

# Scan with custom configuration
config = {
"blacklist_patterns": ["unsafe_model", "malicious_net"],
"max_file_size": 1073741824, # 1GB
"timeout": 600 # 10 minutes
}

results = scan_model_directory_or_file("path/to/models/", **config)

JSON Output Format

When using --format json, ModelAudit outputs structured results:

{
"scanner_names": ["pickle"],
"start_time": 1750168822.481906,
"bytes_scanned": 74,
"issues": [
{
"message": "Found REDUCE opcode - potential __reduce__ method execution",
"severity": "warning",
"location": "evil.pickle (pos 71)",
"details": {
"position": 71,
"opcode": "REDUCE"
},
"timestamp": 1750168822.482304
},
{
"message": "Suspicious module reference found: posix.system",
"severity": "critical",
"location": "evil.pickle (pos 28)",
"details": {
"module": "posix",
"function": "system",
"position": 28,
"opcode": "STACK_GLOBAL"
},
"timestamp": 1750168822.482378,
"why": "The 'os' module provides direct access to operating system functions."
}
],
"has_errors": false,
"files_scanned": 1,
"duration": 0.0005328655242919922,
"assets": [
{
"path": "evil.pickle",
"type": "pickle"
}
]
}

SARIF Output Format

ModelAudit supports SARIF (Static Analysis Results Interchange Format) 2.1.0 output for seamless integration with security tools and CI/CD pipelines:

# Output SARIF to stdout
promptfoo scan-model model.pkl --format sarif

# Save SARIF to file
promptfoo scan-model model.pkl --format sarif --output results.sarif

# Scan multiple models with SARIF output
promptfoo scan-model models/ --format sarif --output scan-results.sarif

SARIF Structure

The SARIF output includes:

  • Rules: Unique security patterns detected (e.g., pickle issues, dangerous imports)
  • Results: Individual findings with severity levels, locations, and fingerprints
  • Artifacts: Information about scanned files including hashes
  • Tool Information: ModelAudit version and capabilities
  • Invocation Details: Command-line arguments and scan statistics

Example SARIF output structure:

{
"$schema": "https://raw.githubusercontent.com/oasis-tcs/sarif-spec/master/Schemata/sarif-schema-2.1.0.json",
"version": "2.1.0",
"runs": [
{
"tool": {
"driver": {
"name": "ModelAudit",
"version": "0.2.3",
"rules": [
{
"id": "MA-PICKLE-ISSUE",
"name": "Pickle Security Issue",
"defaultConfiguration": {
"level": "error",
"rank": 90.0
}
}
]
}
},
"results": [
{
"ruleId": "MA-PICKLE-ISSUE",
"level": "error",
"message": {
"text": "Suspicious module reference found: os.system"
},
"locations": [
{
"physicalLocation": {
"artifactLocation": {
"uri": "model.pkl"
}
}
}
]
}
]
}
]
}

Severity Mapping

ModelAudit severities are mapped to SARIF levels:

  • CRITICALerror
  • WARNINGwarning
  • INFOnote
  • DEBUGnone

Integration with Security Tools

SARIF output enables integration with:

GitHub Advanced Security

# .github/workflows/security.yml
- name: Scan models
run: promptfoo scan-model models/ --format sarif --output model-scan.sarif

- name: Upload SARIF to GitHub
uses: github/codeql-action/upload-sarif@v3
with:
sarif_file: model-scan.sarif
category: model-security

Azure DevOps

# azure-pipelines.yml
- script: |
promptfoo scan-model models/ --format sarif --output $(Build.ArtifactStagingDirectory)/model-scan.sarif
displayName: 'Scan models'

- task: PublishSecurityAnalysisLogs@3
inputs:
ArtifactName: 'CodeAnalysisLogs'
ArtifactType: 'Container'
AllTools: false
ToolLogsNotFoundAction: 'Standard'

VS Code SARIF Viewer

# Generate SARIF for local viewing
promptfoo scan-model . --format sarif --output scan.sarif

# Open in VS Code with SARIF Viewer extension
code scan.sarif

Static Analysis Platforms

SARIF output is compatible with:

  • SonarQube/SonarCloud (via import)
  • Fortify
  • Checkmarx
  • CodeQL
  • Snyk
  • And many other SARIF-compatible tools

Software Bill of Materials (SBOM)

Generate CycloneDX-compliant SBOMs with license information:

promptfoo scan-model models/ --sbom model-sbom.json

The SBOM includes:

  • Component information (files, types, sizes, checksums)
  • License metadata (detected licenses, copyright holders)
  • Risk scoring based on scan findings
  • Model/dataset classification

Troubleshooting

Common Issues

  1. Missing Dependencies

    Error: h5py not installed, cannot scan Keras H5 files

    Solution: Install the required dependencies:

    pip install h5py tensorflow
  2. Timeout Errors

    Error: Scan timeout after 300 seconds

    Solution: Increase the timeout:

    promptfoo scan-model model.pkl --timeout 7200  # 2 hours for very large models
  3. File Size Limits

    Warning: File too large to scan

    Solution: Increase the maximum file size:

    promptfoo scan-model model.pkl --max-size 3GB
  4. Unknown Format

    Warning: Unknown or unhandled format

    Solution: Ensure the file is in a supported format.

Extending ModelAudit

Creating Custom Scanners

You can create custom scanners by extending the BaseScanner class:

from modelaudit.scanners.base import BaseScanner, ScanResult, IssueSeverity

class CustomModelScanner(BaseScanner):
"""Scanner for custom model format"""
name = "custom_format"
description = "Scans custom model format for security issues"
supported_extensions = [".custom", ".mymodel"]

@classmethod
def can_handle(cls, path: str) -> bool:
"""Check if this scanner can handle the given path"""
return path.endswith(tuple(cls.supported_extensions))

def scan(self, path: str) -> ScanResult:
"""Scan the model file for security issues"""
result = self._create_result()

try:
# Your custom scanning logic here
with open(path, 'rb') as f:
content = f.read()

if b'malicious_pattern' in content:
result.add_issue(
"Suspicious pattern found",
severity=IssueSeverity.WARNING,
location=path,
details={"pattern": "malicious_pattern"}
)

except Exception as e:
result.add_issue(
f"Error scanning file: {str(e)}",
severity=IssueSeverity.CRITICAL,
location=path,
details={"exception": str(e)}
)

result.finish(success=True)
return result

Register your custom scanner:

from modelaudit.scanners import SCANNER_REGISTRY
from my_custom_scanner import CustomModelScanner

# Register the custom scanner
SCANNER_REGISTRY.append(CustomModelScanner)

# Now you can use it
from modelaudit.core import scan_model_directory_or_file
results = scan_model_directory_or_file("path/to/custom_model.mymodel")